Building Precision Care for Autism(s)

Kevin Pelphrey, PhD Harrison-Wood Jefferson Scholars Foundation Professor of Neurology

Problem: Lack of mechanistically informed *biological markers* perpetuates the *status quo* of inexact treatments, wasted time and resources, failures to optimize progress for children and families.

The Social Brain

Biological

Mechanical

Mechanical

Biological

Pelphrey et al. (2003) Journal of Neuroscience

Social vs. Non-Social Motion

Coherent Biological (BIO)

Scrambled Biological (SCRAM)

Kaiser et al. (2010) PNAS

Sensitive, reliable brain measures that are informative at the level of the individual

Björnsdotter et al. (2016) JAMA

Björnsdotter et al. (2016) JAMA

NIH Autism Center of Excellence (ACE): Girls' Neurogenetics Network

NIH ACE Neurogenetics Network

Duda et al. (2018) Translational Psychiatry

State & Sestan 2012; Willsey et al. Cell 2013

ASD^{\bigcirc} neural signature does not overlap with $\mathsf{ASD}^{\triangleleft}_{\bigcirc}$ neural signature

x = 56 x = 52 x = 48

TDQ-ASDQ cluster-wise z < 2.3, p < .05 TD ∂ -ASD ∂ cluster-wise z < 2.3, p < .05

Jack et al. (in press) BRAIN

Creation of Criteria Gene-Set

Regions characterized in BrainSpan Developmental Transcriptome (Periods 3-10)

ASDQ Neural Signature regions (TDQ > ASD Q response to BIO-SCRAM)

Criteria gene-set: ASDQ Neural Signature Regions Genes with any positive expression in these sites periods 3-10

M1C: Primary motor cortex, R & L STC: Superior temporal cortex, R STC: Primary somatosensory cortex, R & L STR: Striatum, R & L VFC: Ventrolateral prefrontal cortex, R & L

"Spatio-temporal transcriptome of the human brain" Kang et al., 2011, *Nature*

Jack et al. (in press) BRAIN

All ASD^Q Neural Signature

Versus♀-♂mean difference & *p*-value in:

Randomization Test	p	
All CNVs	.0005	ן
All CNVs, sex-specific	.0011	
Exon array	.0000	held
Exon array, sex-specific	.0434	constant
Within criteria set, randomize sex	.0037 _	J
Select 11 random Brainspan regions (<i>can include original</i> regions)	.1903	

Jack et al. (in press) BRAIN

Brain networks "speak to us"

tactile language social cognition Girls meaning com Network to calawareness_{Judgments} attention retrieval Construct somatosensory default mode recognition social perception recall evaluation motor controlauditory mapping object sounds self referentia motion language identity comprehension Boys -Network to recognition phonological strategy sounds perception recal cognitive controlspatial response inhibition^{salience} words SOCIAI PCICEP nents faces attentionSocial cognition self referential speech perception biological attentionnonverbal cues object Construct judgments mapping retrieval visuospatial **CUES** auditory visual

otion

Predicting treatment response & revealing mechanisms of change

Yang et al. (2016) Translational Psychiatry

Levers to improve behavioral treatment response

Art by Charlotte Pretzsch

Intranasal Oxytocin

Oxytocin

Gordon et al. (2013) PNAS

fNIRS: Predicting language development from early brain response to infant directed speech

* Increase in HbO depicted in lateral arrays and decrease in frontal array

McDonald et al. (2019) Developmental Cognitive Neuroscience

Newborn screening for social development

In a Populationrepresentative sample

Acknowledgments

Funding for this work was provided by:

NIMH NICHD NINDS Simons Foundation Harrison Family Wood Family Dietz Family John Merck Scholars Fund Binational Science Foundation Jefferson Scholars Foundation Autism Speaks Autism Science Foundation

We thank the participants & their families for participating in our work. I thank my students and colleagues who make team science very fun.

Contact: kevin.pelphrey@virginia.edu or 203-393-6871